MOSES Coding Specifications

The MOSES Project:
Meta Operating System And Entity Shell

Daniel J. Pezely
11 April 1991

1 Programming Language

The programming language syntax used here follows the ANSI X3J11 C
programming language specifications and will be referred to as C.

2 Function Specifications

2.1 Calling Conventions

The C calling conventions for functions (parameter evaluation order) shall
be maintained for all non-private kernel routines for all implementations in
all programming languages used.

2.2 Return Codes

All routines described in this document return a signed integer value for
success status, unless otherwise specified. The status value shall be a code
corresponding to success, failure, or any errors which may have occurred.

1



Success is context dependent and will usually mean successful assignment or
allocation of a resource, and it will always mean the task has completed.

When an error code is returned, the calling routines are responsible for
recognizing the errors and taking appropriate action. Fatal errors cannot be
forced and are not graceful. That is, no return value will cause a fatal error,
and when fatal errors occur, no return value will be sent. User source code
may have its own concept of a fatal error which is handled delicately.

The status codes shall always be referenced by name, and the corre-
sponding values should be irrelevant with the sole exceptions of the first
three values. MOSES_Success, MOSES_Failure, and MOSES_OK shall have the
values 2, 0, and 1, respectfully, to coincide peacefully with boolean values,
even though a strict comparison of return values is strongly advised.

2.2.1 Status Return Codes:

1. MOSES_Success == 2 — Everything in this task worked completely

2. MOSES Failure == 0 — Something in this task was unable to be com-
pleted

3. MOSES_0K == 1 — Neutral; the task completed, period

2.2.2 Error Return Codes:

1. MOSES_Close_Failed — Cannot close file descriptor

2. MOSES_Memory_Full — Out of memory; cannot complete allocation

3. MOSES_Message_Bad — Message was malformed or incomplete

4. MOSES_Open_Failed — Cannot open specified file descriptor

5. MOSES_Parameter_Bad — Parameter was malformed or out of range
6. MOSES_Parameter_Null — A non-null parameter was expected

7. MOSES_Parameter_Size — Invalid size parameter: too large or small
8. MOSES_Read _Failed — Cannot read from file descriptor

9. MOSES_Select_Failed — Selection could not be made; generic



10. MOSES_Select_Address_Stale — Presumed actual address is incorrect
11. MOSES_Task_Killed — Task execution forced to terminate

12. MOSES_Task_Suspended — Task not executing temporarily

13. MOSES_Task_Terminated — Task exited, reason unknown

14. MOSES_Task_Failed — New task could not be started

15. MOSES Write_Failed — Cannot write to file descriptor

2.3 Parameters

To ensure consistency with existing C libraries, function parameters conform
to the traditional standard C programming convention of function(destination,
source). This is not directly expandable to C+—+ class methods, so inline
methods should be used.

In the cases of GroupleSymbolClass parameters where sizes are required,
the corresponding sizes shall always follow the parameter they apply to.

All functions outlined in this document shall be passed references to
GroupleHeadClass structures which contain the data to be manipulated.
This includes functions called via pointers. Such a restriction forces all ker-
nel data, static and temporary, to be in the DataSpace at all times, provided
the New routines are implemented according to their specifications.

2.3.1 Valid Parameters

Any or all reference parameters may be null; however, any non-null parameter
is expected to be a valid pointer. Null destination references will cause most
functions to return MOSES_Failure. No further action will be taken by the
kernel or its libraries.

2.3.2 Grouples as Parameters

An empty grouple refers to a properly allocated GroupleHeadClass structure
which simply references no terms (GroupleTermClass structures). A null
grouple refers to a GroupleHeadClass structure pointer which has not been
allocated, thus the pointer value should be null.



2.3.3 Parameters to Function Pointers

This section also extends to the functions within the DataSpace and called
via the fn function pointer within the GroupleTermClass structure: the
GroupleFnPtrClass typedef. That is, a reference to a grouple is passed as
the parameter; however, these functions only take one parameter and return
that parameter, if modified.




