DataSpace Entity Specifications

The MOSES Project:
Meta Operating System And Entity Shell

Daniel J. Pezely
9 April 1991

1 Introduction

The DataSpace of the MOSES Project is a shared, virtual memory which
appears central and an exclusive resource to each of its multiple users. Users
will ultimately be client programmers whose routines will be accessed by
higher-level users. This is the description and specification overview of the
DataSpace and its operational routines.

2 Design and Use

The DataSpace contains all data structures for the kernel, as well as all allo-
cated storage for the kernel and some of its daemons and applications. This
storage facility (location, functionality, and access methodology) is referred
as the DataSpace Entity.

The DataSpace provides a virtual, centralized, and shared memory for
applications and also shares that memory with the kernel. Therefore, all ker-

1

nel variables are potentially accessible to users and applications. The unity
which the DataSpace provides, makes accessing distributed memories trans-
parent to its users. The distributed memories may be shared, but each user
can have the illusion of ownership. Allowing for distribution, the DataSpace
can store run-time specific data, such as function pointers, in RAM and all
other data on a database server.

The DataSpace is an associative memory tuple space similar to the Linda [1]
shared memory space, and the Linda commands may be inplemented using
the DataSpace operations.

In Linda, the information list construct is a tuple; however, our design
allows for nesting and the actual address of the tuple may be used. Such a
tuple violates its definition, so we refer to information lists as grouples.

The operations on the DataSpace are defined in the following modules:

e Symbol module — operations on generic, atomic data-strings
e Term module — operations on elements of grouples

e Grouple module — operations on whole grouples

e Globals module — operations on kernel variables

where each module has these base operations:

1. New — attempts memory allocation

2. Delete — removes one reference to data and deallocates unreferenced
data

3. Copy — duplicates structure and content of data

4. Fvaluate — executes specified task

5. Select — finds a match in the DataSpace from a pattern
6. Substitute — replaces one instance of data with another

Nesting is allowed via addressing the DataSpace internally. If the actual
address is used for access, the addressed grouple is checked against the search
pattern to avoid use of stale addresses. This feature is provided for user-
alternative access methods such as hashing and trees.

The DataSpace is linear; however, to implement organizational structures
such as trees, sublists, or hash tables, the indices needed should be imple-
mented within the DataSpace. That is, since indices are references which are
just data, use the DataSpace to store that data. Since the code to imple-
ment such structures would have to be linked in with the kernel to execute
efficiently, the indices could be accessed without the complexity of searching
the DataSpace via the DataSpace-Globals Module.

2.1 Storing Data
2.2 Storing Functions
2.3 Use of Genuine Dynamic Linking

3 Data Structures

The two data structures described in the following subsections provide a
head and body relationship similar to disk file headers and their correspond-
ing chained data blocks. As files relate to a file system, the following data
structures will be maintained within the DataSpace. File system and net-
worked file system design features should be part of the data structures to
provide the user with a shared memory.

The two structures are GroupleHeadClass and GroupleTermClass, and
referred to as heads and terms, respectfully. Grouple in this context col-
lectively refers to a head and its corresponding chain of terms. And the
DataSpace is the list of all allocated grouples linked together.

As is commonly the case with handles, references to the head will always
remain intact while the second reference, to the terms, may be altered; thus
overall data integrity is maintained.

For more complex grouple storage and access methods then the linear
order of the DataSpace, indices may be constructed and maintained using
grouples. That is, by creating a grouple which is ordered via a tree pattern
or hash function, accessing the DataSpace by first accessing a known grou-
ple could reduce searching complexity. Such tools should be implemented as
complete objects which use the functions prototyped in this document and
not need to modify these data structures or add functions to the the DataS-
pace Object. Such objects should be the only other features added to the

kernel; all other objects should be built into external kernel services.

3.1 Type Definitions

typedef struct _GroupleHeadClass GroupleHeadClass;

typedef struct _GroupleTermClass GroupleTermClass;

typedef unsigned long GroupleSymbolClass;

typedef GroupleHeadClass * (* GroupleFnPtrClass) (GroupleHeadClass *);

typedef enum _GroupleFormTypes GroupleFormTypes;

enum _GroupleFormTypes {
UNKNOWN_FORM = O,
SYMBOL_FORM,
SUBLIST_FORM,
FN_FORM

s

Of the two structures, GroupleTermClass is referenced inside GroupleHeadClass.
The Symbol should occupy the full word size of the host CPU general regis-
ters and only effects the choice for optimal allocation and transfer sizes. The
order of enumeration constants shall be maintained to accept run-time and
dynamic linking consistency.

The VariableClass definition is equivalent to the GroupleHeadClass
typedef. This definition duplication is intended to give client programmers
a simplified type for use with variables to be held in the DataSpace.

Grouple symbols are generic for holding characters larger then just one
byte. To maintain consistency, the network byte-order (most significant octet
first) shall be used for communication and possibly storage.

The GroupleFnPtrClass type-definition is a function pointer which refer-
ences a function taking a GroupleHeadClass reference parameter and returns
the same type as its parameter.

3.2 GroupleHeadClass

struct _GroupleHeadClass <
unsigned long flags;

unsigned long readers;

unsigned long links;
GroupleTermClass * head;
GroupleTermClass * tail;
GroupleHeadClass * next;

};

Three status fields are used in this structure: flags, readers, and links
representing, respectfully, modification and data sharing flags, the number
of entities reading this grouple, and the number of grouples referencing this
grouple. These fields are unsigned integers and resemble fields in a file-system
inode.

The head and tail member fields respectfully reference the start and end
of the chain of terms associated with this grouple and both shall be either
null or non-null.

The next field of the grouple structure may or may not be used for
organizing the allocated grouples. If the field is not used, chains of the
root level lists can be efficiently allocated and managed by using what the
BSD people call superblocks [2]. This is discussed further in the DataSpace
Management section below.

All GroupleHeadClass instances shall be linked into the DataSpace when
allocated, thus allowing traversal of all allocated grouples.

3.3 GroupleTermClass

struct _GroupleTermClass {
unsigned flags;
GroupleFormTypes type;
union _GroupleForm {
GroupleSymbolClass * symbol;
GroupleHeadClass * sublist;
GroupleFnPtrClass fn;

} form;
unsigned size;
GroupleTermClass * next;

A GroupleTermClass instance shall store and maintain only one form a
symbol, a pointer to a nested grouple, or a function pointer via a union struc-
ture and corresponding enum field, type. These members are, respectfully,
symbol, sublist, and fn within the form union and type enum.

Since the type field is an enumeration with only three values, only two
bits are required to store the value. The extra bits may be used as a flags
field, which would be helpful for parallel evaluation which operates upon a
multiple terms concurrently.

The fn field is a pointer to a function which takes a GroupleHeadClass
pointer parameter and returns the same type. The C language syntax can
become messy if typecasting is necessary, so a typedef is provided for the
function pointer: GroupleFnPtrClass.

The size member field is for maintaining array lengths of any of the
three forms. For example, size would refer to the number of characters in
the symbol field and not to the number of bytes of that field. A zero value
in size shall mean an array is not used in this node, and a non-zero value
shall mean that an array is used. Arrays can be allocated by typecasting the
pointers, since a pointer to a pointer is still a pointer. The next field points
to the next term in the chain of this grouple.

All member fields are pointers with the exception of type which is an
enum and size which is an unsigned integer.

4 DataSpace Management

The order and structure of the DataSpace has only one requirement: some
users must be able to traverse the entire DataSpace from beginning to end
without regard for any subspace boundaries.

This traversal ability requirement may be done by ordering all GroupleHeadClass
structures in a list indexed by a tree or a table. There is a next field in the
grouple head data structure give above for the simplest implementation using
a singlely linked list. However, since the grouple structure serves much the
same purposes as a file system inode, the superblock methodology might be
used. [2]

As is done with many large database systems today, multiple storages
and access mechanisms are used. Although only one access method is used
at once, as the data grows, different approaches become more efficient. The

desired degree of efficiency is ultimately up to the implementor and develop-
ment requirements.

It is important to note that at this level, we are only accessing grou-
ples, without any knowledge or consideration of what is stored within those
grouples. When we need to have high-performance access to the grouples
selectively, we then need an intelligent parser which is the next level higher
in the abstract model.

5 Parsing the DataSpace

Any parser which operates on the DataSpace does not directly access any
grouple. Instead, the parser will decide what it wants and tell that to one of
the selection routines. The selection routines, then, do the actual access of
the DataSpace.

6 Global Variables

All global variables within the kernel should be stored within the DataSpace.
This provides users access to otherwise internal data and is modifiable at run-
time.

The only extra overhead of using variables in this way is the indirection
of pointers to the data. The functions calls used to access the data should
be inline routines to handle the known templates, thus have no overhead of
parameter passing at run-time.

All data structures which might need to be created for the I/O routines
shall be linked into the DataSpace by storing the structure address as a
symbol and storing the first word of the structure as the first element of a
symbol array. The Grouple I/O Object, for example, maintains active file
descriptor tables in this way.

6.1 Syntax

All global variables used by the kernel (and thus all the objects and modules
within the kernel) shall be:

1. stored in the form of grouples

2. using standard notational conventions, the structure corresponding to
the Global-Variable template will be:

<variable-name> [<sublist of properties> ...] <value>

The value of the variable shall always be the last element in the grouple,
even if the value is a reference to another grouple

3. stored in the DataSpace

6.2 Location

All global values used by the kernel, the kernel programming objects, and
their associated modules, shall be stored in the DataSpace. This gives the
user access to all otherwise hidden variables and state values. Global pointers
will be maintained to reference specific elements of the DataSpace for run-
time efficiency, so restrictions must be placed on such grouples.

6.3 Access

The kernel routines shall access all global variable values via a pointer to a
GroupleHeadClass structure (which will always be linked into the DataS-
pace) and reference the tail member field to reach the actual value. Actual
operations are implementation dependent.

References

[1] Carriero, N., Gelernter, D., “Applications Experience with Linda,” Sym-
posium on Principles and Practice of Parallel Programming, Proceedings
of the ACM/SIGPLAN, Volume 23, Issue 9, September 1988, pp. 173-187.

[2] Leffler, S.J., McKusick, M.K., Karels, M.J., Quaterman, J.S. The Design
and Implementation of the 4.3 BSD UNIX Operating System, Addison-
Wesley Publishing Company, New York, NY, 1989, pp. 13, 203-208, 281-
310.

