DataSpace Function
Specifications

The MOSES Project:
Meta Operating System And Entity Shell

Daniel J. Pezely
11 April 1991

1 The Grouple Symbol Module

Grouple symbols are generic for holding characters larger then just one byte.
So, it is important to note again here that to maintain consistency, the net-

work byte-order shall be used for message-passing.

The following functions are described below:

1. NewSymbol()
2. NewSymbol_fromCstring()
3. NewSymbol _nByte()
4. DeleteSymbol()
5. CopySymbol()
6. CopySymbol_fromCstring()
7. CopySymbol_toCstring()
8. CopySymbol nByte ()
9. EvaluateSymbol()

10. SelectSymbol()

11. SubstituteSymbol()

The symbol equivalents for the standard C string ma-
nipulation routine are listed after the descriptions of the
routines in this list.

1.1 NewSymbol

GroupleSymbolClass * NewSymbol(int length)

e Parameter: length (number of characters) of symbol to create

Attempt to allocate memory for a symbol string

Memory allocated will be at least the requested size, if successful

Passing a negative or zero length will fail

Returns:

1. If successful, returns an allocated symbol reference with all char-
acters assigned to zero

2. If unsuccessful (memory is full or unavailable), returns null

1.2

NewSymbol_fromCstring

GroupleSymbolClass * NewSymbol_fromCstring(char * string,

int * length)

Parameters:

1. C string

2. referenced length (number of characters) of string to be assigned
Attempts to allocate a symbol string to contain the specified string
Memory allocated will be at least the requested size if successful

If allocation succeeds, contents of C string will be copied to the symbol
string

Each C string character will occupy the lowest byte of the symbol
character, and no delimiting token character will be assigned

Passing a null string will return a null symbol
Passing a null reference to the length will fail
Return:

1. If successful, returns an allocated, assigned symbol reference

2. If unsuccessful (memory full or unavailable), returns null

1.3 NewSymbol_nByte

GroupleSymbolClass * NewSymbol_nByte(GroupleSymbolClass * string,
int numBytes,
int length)

e Parameters:

1. referenced symbol character or symbol string
2. number of bytes per string character

3. length of string (number of characters)
e Attempt to allocate a new symbol string
e Memory allocated will be at least the requested size if successful

e If allocation succeeds, contents of string will be copied to the symbol
such that each string parameter character will occupy the lowest bytes
of the symbol character.

o If the string parameter characters occupy more bytes than do sym-
bol characters, wrap-around of characters will occur such that string
parameter characters will remain in network byte-order

e Passing a null string or zero length will fail
e Returns:

1. If successful, returns an allocated, assigned symbol reference

2. If unsuccessful, returns null

1.4 DeleteSymbol

int DeleteSymbol(GroupleSymbolClass * oldSymbol)

e Parameter: old symbol to be destroyed

Deallocate the symbol

Note: a free-list may be maintained, but such internal features are not
required for compatibility

Passing a null symbol will always succeed

Return success status

1.5 CopySymbol

int CopySymbol(GroupleSymbolClass * destSymbol,
GroupleSymbolClass * sourceSymbol,
int length)

e Parameters:

1. referenced destination symbol character or string
2. referenced source symbol character or string

3. length of symbol string
e Duplicate the source symbol string

e [f the destination symbol is non-null, it is assumed to be large enough
to contain the source

e If the destination symbol is null, attempt to allocate it to be at least
as large as the specified length

e Copy the symbol strings up to the specified length
e Passing a null source or zero length is always successful

e Passing a null source or zero length and a non-null destination will
cause the destination to be zeroed

e Return success status

1.6

CopySymbol_fromCstring

int CopySymbol_fromCstring(GroupleSymbolClass * destSymbol,

char * sourceSymbol)

Parameters:

1. referenced destination symbol character or string

2. source C string
Duplicate the source symbol string

If the destination symbol is non-null, it is assumed to be large enough
to contain the source

If the destination symbol is null, attempt to allocate it to be at least
as large as the source length

Copy the symbol strings up to, but not including, the delimiting token
character

The C string characters shall occupy the lowest bytes of the symbol
characters in a character-by-character copy

Passing a null source is always successful

Passing a null source and a non-null destination will cause the destina-
tion to be zeroed

Return success status

1.7

CopySymbol_toCstring

int CopySymbol_toCstring(char * destSymbol,

GroupleSymbolClass * sourceSymbol,
int length,
boolean truncate)

Parameters:

1. destination C string

2. referenced source symbol character or string
3. length of source symbol string
4.

boolean flag for truncation mode
Duplicate the source symbol string

If the destination symbol is non-null, it is assumed to be large enough
to contain the source

If the destination symbol is null, attempt to allocate it to be at least
as large as the source length plus one C character for the delimiting
character

Note: the destination length is dependent upon the truncation mode

Copy the symbol strings as determined by what value is passed for the
truncation mode flag

Passing a null source or zero length is always successful

Passing a null source or zero length and a non-null destination will
cause the destination to be zeroed

Passing TRUE for the truncation mode flag will force only the lowest
byte of each symbol character to be copied into C string

Passing FALSE for the truncation mode flag will convert the symbol
string to a C string in network byte-order

Return success status

1.8

CopySymbol_nByte

int CopySymbol_nByte(GroupleSymbolClass * destSymbol,

int destNumBytes,
GroupleSymbolClass * sourceSymbol,
int sourceNumBytes,

int length,

boolean truncate)

e Parameters:

referenced destination symbol character or string
number of bytes per destination character
referenced source symbol character or string
number of bytes per source character

length of source string

A

boolean flag for truncation mode
Duplicate the source string

If the destination symbol is non-null, it is assumed to be large enough
to contain the source

If the destination symbol is null, attempt to allocate it to be at least
as large as the source length

Note: the destination length is dependent upon the truncation mode

Copy the symbol strings as determined by what value is passed for the
truncation mode flag

Passing a null source or zero length is always successful

Passing a null source or zero length and a non-null destination will
cause the destination to be zeroed

Passing TRUE for the truncation mode flag will force only the lowest
bytes of each source character to be copied into each destination char-
acter

10

e Passing FALSE for the truncation mode flag will convert the destination
string characters to network byte-order since they will overflow the
destination character size

e Return success status

11

1.9

EvaluateSymbol

int EvaluateSymbol(GroupleHeadClass * resultGrouple,

GroupleSymbolClass * expressionSymbol,
int length
GroupleHeadClass * spaceSearchOrder)

e Parameters:

1. grouple to write result in

2. referenced expression symbol character or sting
3. length of symbol string
4.

space search order grouple (contains list of spaces to search and
order)

Called by EvaluateGrouple() and grouple function pointer routines

Calls SelectSymbol() with spaces which might contain matches for
the expression symbol

Passing a null result grouple will fail since result cannot be written

Passing a non-empty result grouple will be substituted with results,
destroying previous contents

Passing an empty or null expression symbol is considered a successful
evaluation: evaluates to an empty grouple

Passing a null space search order grouple will select from the entire
DataSpace

Passing an empty space search order grouple will always fail since noth-
ing can be searched

Returns success status

12

1.10 SelectSymbol

int SelectSymbol(GroupleHeadClass * matchingGrouple,
GroupleSymbolClass * matchingAddress,
int * addressLength,
GroupleSymbolClass * patternSymbol,
int patternlength,
GroupleSymbolClass * searchSpace)

e Parameters:

1. pre-allocated grouple to be linked with matching

2. referenced symbol character or string describing physical address
of the grouple sought and/or physical address of the matching

3. referenced length of symbol describing physical address

4. referenced symbol character or sting containing the pattern to
search for

5. length of the pattern symbol string

6. grouple specifying which space (or spaces) to search

e Traverse each nested grouple (sublist) within the search space until the
head of the grouple is a non-sublist

e compare each grouple within the search space for a match of the pattern
e the first match found will be substituted into the matching grouple

e Passing a non-empty matching will be assumed to be the previous
matching and specifies where to continue the search

e Passing both a non-empty matching and a non-null physical address
starts searching for the next match, assuming the given matching is at
the given physical address

e Passing a null matching address and/or null address length prevents
assigning both parameters

e Passing a null pattern or zero pattern length matches everything

13

e Passing a null search space will select from the entire DataSpace

e Passing an empty search space will always fail since nothing can be
matched; this over-rides all other cases

e Returns success status

14

1.11 SubstituteSymbol

int SubstituteSymbol(GroupleSymbolClass ** oldSymbol,
GroupleSymbolClass * newSymbol)

Parameters:

1. referenced pointer to old symbol character
or referenced string to be overwritten

2. referenced new symbol character or string
e Attempt to delete the old symbol
e Set the old reference point to the new reference

e Note: this is a copying of pointers and not a copying of symbol charac-
ters

e Passing a null old reference will fail since there would be no place to
substitute in to

e Returns success status

15

Standard String Routines: The following prototypes are for the
GroupleSymbolClass version of the standard C string routines: strcat, strn-
cat, strdup, strcmp, strncmp, strepy, strncpy, strchr, strrchr, strpbrk, strspn,
strcspn, strstr, and strtok.

There is no equivalent for strcasecmp() since symbols deal with more
than just ASCII characters, and there is no equivalent for strlen() since the
lengths of strings must be maintained separately from the string data.

Descriptions are omitted; however, the verbose parameter names should
provide sufficient details. The routines in this section return the same value
as all symbol routines, except where noted, but all routines return an integer.

When cases arise where a string pointer needs to be returned, as refer-
enced pointer variable (double indirection) should be passed as a parameter
to that function. Such parameters are denoted as destSymbol.

int Symbol_cat(GroupleSymbolClass * destSymbol, int destSize,
GroupleSymbolClass * sourceSymbol, int sourceSize)

int Symbol_dup(GroupleSymbolClass ** destSymbol, int * destSize
GroupleSymbolClass * sourceSymbol, int sourceSize)

The Following two function return same as strcmp():

int Symbol_cmp(GroupleSymbolClass * symboll, int sizel,
GroupleSymbolClass * symbol2, int size2)

int Symbol_cpy(GroupleSymbolClass * destSymbol, int * destSize
GroupleSymbolClass * sourceSymbol, int sourceSize)

int Symbol_chr(GroupleSymbolClass * destSymbol, int * destSize
GroupleSymbolClass * sourceSymbol, int sourceSize,
GroupleSymbolClass symbolChar, int numBytes)

int Symbol_chr_nByte(GroupleSymbolClass * destSymbol, int * destSize

16

GroupleSymbolClass * sourceSymbol, int sourceSize,
GroupleSymbolClass symbolChar, int numBytes)

int Symbol_rchr(GroupleSymbolClass * destSymbol, int * destSize
GroupleSymbolClass * sourceSymbol, int sourceSize,
GroupleSymbolClass symbolChar, int numBytes)

int Symbol_rchr_nByte(GroupleSymbolClass * destSymbol, int * destSize
GroupleSymbolClass * sourceSymbol, int sourceSize,
GroupleSymbolClass symbolChar, int numBytes)

int Symbol_pbrk(GroupleSymbolClass ** destSymbol, int * destSize,
GroupleSymbolClass * symboll, int sizel,
GroupleSymbolClass * symbol2, int size2)

The following one function returns the same as strspn():

int Symbol_spn(GroupleSymbolClass * symbol, int size,
GroupleSymbolClass * tokenSymbol, int tokenSize)

The following one function returns the same as strespn():

int Symbol_cspn(GroupleSymbolClass * symbol, int size,
GroupleSymbolClass * tokenSymbol, int tokenSize)

int Symbol_str(GroupleSymbolClass ** destSymbol, int * destSize,
GroupleSymbolClass * symboll, int sizel,
GroupleSymbolClass * symbol2, int size2)

int Symbol_str(GroupleSymbolClass ** destSymbol, int * destSize,

17

GroupleSymbolClass * symbol, int size,
GroupleSymbolClass * tokenSymbol, int tokenSize)

2 The Grouple Term Module

This section contains the following routines:
1. NewTerm()
2. DeleteTerm()
3. CopyTerm()
4. EvaluateTerm()
5. SelectTerm()
6. SubstituteTerm()
7. SubstitutePrefixTerm()

8. SubstituteSuffixTerm()

2.1 NewTerm

GroupleTermClass * NewTerm(void)
e Parameters: none
e Attempts to allocate a GroupleTermClass structure
e Assigns all fields to zero, if allocation successful

e Returns: pointer to allocated term

18

2.2

DeleteTerm

int DeleteTerm(GroupleTermClass * oldTerm)

Parameter: Old term to be destroyed

If the term contains a symbol, deallocate the symbol

If the term contains a sublist, deallocate that grouple via DeleteGrouple ()
Deallocate the term

Note: a free-list may be maintained, but such internal features are not
required for compatibility

Passing a null or empty term will be considered successful

Returns success status

These routines follow from the Grouple and Symbol routines.

2.3
2.4
2.5
2.6
2.7
2.8

CopyTerm
EvaluateTerm
SelectTerm
SubstituteTerm
SubstitutePrefixTerm
SubstituteSuffixTerm

19

3 The Grouple Module

The following functions are described below:
1. NewGrouple()
2. DeleteGrouple()
3. CopyGrouple()
4. EvaluateGrouple()
5. SelectGrouple()

6. SubstituteGrouple ()

3.1 NewGrouple

GroupleHeadClass * NewGrouple(void)

Synopsis: Attempt to allocate memory for a new grouple
Parameters: none
Tasks:

e Attempt to allocate memory for a new grouple
o If unsuccessful, release all memory allocated with this task
e If grouple is not null, assign all fields to null values

e Insert new grouple into the DataSpace, without regard to location

Return:

1. If successful, return an allocated grouple reference with all data fields
assigned zero

2. If unsuccessful (memory full or unavailable), return null

20

3.2

DeleteGrouple

int DeleteGrouple(GroupleHeadClass * oldGrouple)

Synopsis: Remove one link to this grouple
Parameter: grouple to be destroyed
Tasks:

Decrement the link count of this grouple
If the number of readers or number of links is non-zero, do nothing
Else, remove specified grouple from the DataSpace

Deallocate the grouple header (GroupleHeadClass structure) before
destroying any terms within the specified grouple

Deallocate each term via DeleteTerm() only after the header has been
destroyed

Note: a free-list may be maintained, but such internal features are
not required for compatibility

Passing a null grouple shall always be successful

Return success status.

3.3

CopyGrouple

int CopyGrouple(GroupleHeadClass * destGrouple,

GroupleHeadClass * sourceGrouple)

Synopsis: Duplicate entire contents and structure of the source grouple, delet-
ing the contents of the destination grouple if non-null
Parameters:

1.

destination grouple to be assigned

21

2. source grouple to be duplicated
Tasks:

e Assign destination to the duplicate

Note: this is a complete copy of the source, not just a second link
e Delete original destination grouple contents, if not originally null.

e Passing a null destination and a non-null source shall never be success-
ful

Return success status

22

3.4

EvaluateGrouple

int EvaluateGrouple(GroupleHeadClass * expressionGrouple,

GroupleHeadClass * spaceSearchOrder)

Synopsis: perform match and substitute; execute matched function pointers
Parameters:

1.

2.

expression grouple (contains Lisp expression or function pointers)

space search order grouple (contains list of spaces to search in order)

Tasks:

If first term of expression is a function pointer, call that function

Call grouple function pointers with entire expression grouple as the
parameter; function will call selection and evaluation routines as needed

Non-function pointers are evaluated by calling EvaluateSymbol ()

Run task (function) to completion, even if multiprocessing is available

Note: no examination of the function is made, so discrimination
s advised

The results of the called routine will be substituted into the expression
grouple when the function returns

Function pointer calls with no return cause an empty grouple substi-
tution

If the expression head is a symbol, parse the head via SelectSymbol ()

While the expression is not an atomic symbol or function pointer (i.e.,
is a sublist), call this routine recursively with that sublist

Passing an empty expression grouple is considered a successful evalua-
tion: evaluates to itself

Passing a null expression grouple will fail since a substitution cannot
be made back into the expression

23

e Passing a null space search order grouple will search the entire DataS-
pace

e Passing an empty space search order grouple will always fail.

Returns success status
Notes:

1. This routine may be called recursively.

2. On a shared memory system, any modifications to the expression grou-
ple will be lost at the time of substitution, no matter who made the
modifications, with or without security implemented.

3. Grouple functions should return the address of its parameter if the func-
tion modifies the expression grouple, as noted elsewhere.

4. The substitution may be uncoupled from this routine, thus may be done
at anytime, so comparing expression references before using the substi-
tution is advised.

24

3.5

SelectGrouple

int SelectGrouple(GroupleHeadClass * matchingGrouple,

GroupleSymbolClass * matchingAddress,
int * addressLength,

GroupleHeadClass * patternGrouple,
GroupleHeadClass * searchSpace)

Synopsis: Attempt to find one match of the pattern in the space
Parameters:

1.

grouple containing matching to continue from and/or pre-allocated
grouple to be linked with matching

. referenced symbol character or string describing actual address of the

grouple sought and/or actual address of the matching

. referenced length of symbol describing actual address

grouple containing pattern to be matched;

Note: This is a grouple and not just a symbol, but the grouple should
be kept simple.

. grouple containing reference to the DataSpace or a subspace or a flat

grouple

Tasks:

Link matchingGrouple to the first match found, if any

if no match is found, the matching grouple will be unmodified and the
task will be a failure

Calls SelectSymbol ()

Passing a non-empty matching is assumed to be the previous matching,
thus searching will begin following the given matching

Passing a non-null actual address tells this routine that its job is done
if the addressed grouple is a match for the pattern, otherwise it is an
error

25

e Passing both a non-empty matching and a non-null actual address
starts searching for the next match, assuming the given matching is
at the given actual address

e Passing a null matching address and/or null address length prevents
assigning both parameters

e Passing a null or empty pattern matches everything
e Passing a null space will force selection from entire DataSpace
e Passing an empty space can never be matched, thus will fail

e Passing a space containing function pointers will cause comparisons to
be made as follows:

Tasks:

— a copy of the pattern grouple with the function pointer prefixed
will be made

— functions to be compared will be evaluated via EvaluateGrouple ()
with parameter being the modified pattern copy

Returns:
1. In general cases, return success status

2. If the actual address is passed and is incorrect, return the MOSES_Select_Stale_Address
error code

26

3.6 SubstituteGrouple

int SubstituteGrouple(GroupleHeadClass * oldGrouple,
GroupleHeadClass * sourceGrouple)

Synopsis: Copy reference of the old grouple into a temporary address
Parameters:

1. old grouple to be replaced
2. source grouple to substitute with
Tasks:

e Link the old grouple references to the source grouple

Note: a duplication is not made, a second link is created
e Delete original destination grouple contents, if not originally null.
e Passing a null old grouple and a non-null source is never successful

Return success status

The following two routines described here are a composition of the delete
and substitute grouple operations. The new routines are formed to handle
tasks which could not otherwise be done. That is, these are not just calling
two routines consecutively but are operations of the actual original grouples
stored in the DataSpace.

The following functions are described below:
1. DeleteSelectGrouple()

2. SubstituteSelectGrouple()

27

3.7

DeleteSelectGrouple

int DeleteSelectGrouple(GroupleHeadClass * matchingGrouple,

GroupleSymbolClass * matchingAddress,
int addressLength,

GroupleHeadClass * patternGrouple,
GroupleHeadClass * searchSpace)

e Parameters:

1. grouple containing a matching to continue from

2. referenced symbol character or string describing actual address of
the grouple sought

3. length of symbol describing actual address

4. grouple containing pattern to be matched;
Note: This is a grouple and not just a symbol, but the grouple
should be kept simple.

5. grouple containing reference to the DataSpace or a subspace or a
flat grouple

Attempt to find one match of the pattern in the space and delete that
grouple

Calls SelectGrouple() followed by DeleteGrouple() to delete the
grouple matched, not a copy of the match or a secondary reference to
it

Passing a non-empty matching is assumed to be the previous matching,
thus searching will begin following the given matching

Passing a null matching does not cause the routine to fail, as it does
with SelectGrouple()

Passing a non-null actual address tells this routine that its job is done
if the addressed grouple is a match for the pattern, otherwise it is an
error

28

Passing both a non-empty matching and a non-null actual address
starts searching for the next match, assuming the given matching is
at the given actual address

Passing a null matching address and/or null address length prevents
assigning both parameters

Passing a null or empty pattern matches everything
Passing a null space forces a search of the entire DataSpace
Passing an empty space can never be matched

Passing a space containing function pointers will cause comparisons to
be made as follows:

— a copy of the pattern grouple with the function pointer prefixed
will be made

— functions to be compared will be evaluated via EvaluateGrouple ()
with parameter being the modified pattern copy

Returns:

1. In general cases, return success status

2. If the actual address is passed and is incorrect, return the MOSES_Select_Stale_Address
error code

29

3.8 SubstituteSelectGrouple

int SubstituteSelectGrouple(GroupleHeadClass * matchingGrouple,
GroupleSymbolClass * matchingAddress,
int * addressLength,
GroupleHeadClass * patternGrouple,
GroupleHeadClass * searchSpace,
GroupleHeadClass * sourceGrouple

e Parameters:
1. pre-allocated grouple containing a possible initial matching and
to be the grouple which gets substituted grouple for the matching

2. referenced symbol character or string describing actual address of
the grouple sought and/or actual address of the newly substituted
grouple

3. referenced length of symbol describing actual address

4. grouple containing pattern to be matched;

Note: This is a grouple and not just a symbol, but the grouple
should be kept simple.

5. grouple containing reference to the DataSpace or a subspace or a
flat grouple

6. source grouple to replace matching grouple

e Attempt to find one match of the pattern in the space and substitute
the source grouple for the matching grouple

e Calls SelectGrouple() followed by SubstituteGrouple() to replace
the matched grouple which is in the DataSpace, not a copy of that
grouple or a secondary reference to it

e Note: The matching address may have to be re-calculated if the DataS-
pace 1s ordered by a hashing function or tree structure.

e Passing a non-empty matching is assumed to be the previous matching,
thus searching will begin following the given matching

30

Passing a non-null actual address tells this routine that its job is done
if the addressed grouple is a match for the pattern, otherwise it is an
error

Passing both a non-empty matching and a non-null actual address
starts searching for the next match, assuming the given matching is
at the given actual address

Passing a null matching address and/or null address length prevents
assigning both parameters

Passing a null or empty pattern matches everything
Passing a null space forces a search of the entire DataSpace
Passing an empty space can never be matched

Passing a space containing function pointers will cause comparisons to
be made as follows:

— a copy of the pattern grouple with the function pointer prefixed
will be made

— functions to be compared will be evaluated via EvaluateGrouple ()
with parameter being the modified pattern copy

Returns:

1. In general cases, return success status

2. If the actual address is passed and is incorrect, return the MOSES _Select_Stale_Address
error code

31

4 Grouple I/O

The extent to which this object provides functionality determines if MOSES
is a stand-alone operating system or a meta operating system, which is an
application to another operating system.

All memory which this object might need to use will be managed by the
DataSpace Object. That is, all object-global variables shall be allocated and
manipulated via the DataSpace Object routines described in this document.

The Interrupt Handler, Device Drivers, and File Descriptor 1/O modules
will be provided by the native operating system which MOSES will be run-
ning on. These modules need only provide enough facility to support the
routines outlined in this section. Specifically, the native operating system
must support file descriptors (or an equivalent high-level access to devices).

4.1 Message I/0

The following functions are described below:
1. I0_SelectNextFD()
2. I0_GroupleReadFD()

3. I0_GroupleWriteFD()

32

4.1.1 10_SelectNextFD

int I0_SelectNextFD(int * currentFD,
I0_ModeType mode)

enum _I0_ModeType { READ_MODE, WRITE_MODE, EXCEPTION_MODE };

Parameters:

1. reference to the file descriptor to be assigned

2. enumeration of function mode: read, write, or exception to select

Select the next file descriptor to be the current one

Make selection based upon file descriptors waiting to be read, written,
or have an exception pending

Passing a null reference will always fail

Passing an invalid mode will always fail

Returns success status

33

4.1.2 10_GroupleReadFD

int I0_GroupleReadFD(Grouple_Class * grouple,
int fd)

e Parameters:

1. reference to an allocated grouple
2. file descriptor number

e Read data from the device associated with the specified file descriptor

e Form a grouple by parsing the input stream according to the Common
Lisp programming language syntax

e Returns success status

4.1.3 10_GroupleWriteFD

int I0_GroupleWriteFD(Grouple_Class * grouple,
int fd)

Parameters:

1. reference to an allocated grouple

2. file descriptor number

Writes a grouple to the device associated with the file descriptor

Forms the Common Lisp programming language syntax from the spec-
ified grouple

Returns success status

34

4.2 Miscellaneous Grouple I/O Routines:
4.2.1 Initialize 1O
int Initialize_IO(void)

e Parameters: none

e Performs any and all initialization tasks, dependent upon the imple-
mentation

e Returns success status

5 The Variables Module

All variables are grouples, thus stored in the DataSpace. The purpose of a
special module to handle variables is to make client programmer jobs so easy
that they will want to use the Variables module for the benefits of run-time
debugging without the aid of source-level debuggers and the ability to modify
values at run-time.

The following routines are described below:
1. MakeSymbolVariable ()
2. MakeTermVariable()
3. MakeFnVariable()

4. MakeGroupleVariable()

5.1 MakeSymbolVariable

int MakeSymbolVariable(GroupleHeadClass ** grouple,
char * name,
GroupleSymbolClass * value,
int valueLength)

35

Synopsis: Attempt to allocate a new grouple in the DataSpace
Parameters:

1. referenced grouple pointer for allocated grouple
2. C string containing variable name

3. Referenced symbol character or string containing the value of the vari-
able variable

4. Length of the value symbol
Tasks:
e Attempt to allocate a new grouple in the DataSpace
e Assign new grouple head to a symbol containing the specified name
e Assign new grouple tail to the specified value symbol
e Passing a null grouple pointer reference will fail
e Passing a null name will fail

Returns success status

5.2 MakeTermVariable

int MakeTermVariable(GroupleHeadClass ** grouple,
char * name,
GroupleTermClass * term)

Synopsis: Attempt to allocate a new grouple in the DataSpace
Parameters:

1. referenced grouple pointer for allocated grouple

2. C string containing variable name

36

3. Referenced term
Tasks:
e Attempt to allocate a new grouple in the DataSpace
e Assign new grouple head to a symbol containing the specified name
e Assign new grouple tail to the specified term
e Passing a null grouple pointer reference will fail
e Passing a null name will fail

Returns success status

5.3 MakeFnVariable

int MakeFnVariable(GroupleHeadClass ** grouple,
char * name,
GroupleFnPtrClass fn)

Synopsis: Attempt to allocate a grouple in the DataSpace
Parameters:

1. C string containing variable name
2. function pointer to be associated with name
Tasks:
e Attempt to allocate a grouple in the DataSpace
e Assign new grouple head to a symbol containing the specified name
e Assign new grouple tail to a term containing the specified function

e Passing a null name will fail

37

Returns:
1. If successful, returns an allocated grouple reference

e containing a DataSpace variable

e value should be retrieved via SelectVariable()

2. If unsuccessful (memory full or unavailable), returns null

38

5.4 NewVariableGrouple

GroupleHeadClass * NewVariableGrouple(char * name,
GroupleHeadClass * grouple)

Synopsis: Attempt to allocate a grouple in the DataSpace
Parameters:

1. C string containing variable name
2. referenced grouple to be variable value
Tasks:
e Attempt to allocate a grouple in the DataSpace
e Assign new grouple head to a symbol containing the specified name
e Assign new grouple tail to the specified grouple reference
e Passing a null name will fail
Returns:
1. If successful, returns a grouple reference

e containing a DataSpace variable

e value should be retrieved via SelectVariable()

2. If unsuccessful (memory full or unavailable), returns null

39

5.5

SelectVariable

int SelectVariable(char * name,

GroupleSymbolClass * address,
int * addressLength,
GroupleSymbolClass * value,

int * valueLength)

Synopsis: Select the first matching grouple and assign the physical address,
value, and associated lengths
Parameters:

1.
2.

3.
4.
d.

C string containing the name of variable variable

referenced symbol character or string expected physical address of the
variable

referenced length of physical address
referenced value symbol to be assigned (typecast if non-symbol)

referenced length of value symbol

Tasks:

Select the first matching grouple and assign the physical address, value,
and associated lengths

Passing a null name will always fail

Passing a non-null physical address will attempt to select addressed
grouple

Passing an invalid physical address will cause address to be ignored

Passing a null address or address length will cause both parameters to
not be assigned

Passing a null value or value length will cause both parameters to not
be assigned

Return success status

40

