Using
Large-Scale Operating Systems’

Designs
For An Eclectic Design

The MOSES Project:
Meta Operating System And Entity Shell

Daniel J. Pezely
2 February 1992

1 Introduction

MOSES, the Meta Operating System and Entity Shell, is an implementation
design for intercommunication of tasks with devices, all forms of storage,
and other tasks, such that the client-task has no need to distinguish between
remote and local entities. Although this design was developed for specific
use in virtual environment platforms, independent of detailed knowledge of
pre-existing operating systems’ designs, our design shares similar features
with many modern large-scale operating systems.

A brief overview of the MOSES design is given, followed by descriptions
of some of these other operating systems, and concluded with a summary of
the MOSES design defined in terms of these other operating systems.



2 Overview of MOSES

MOSES is a modern operating system intended for large-scale use which has
a minimal structure, thus allowing all internal functionality to be modified,
if not replaced altogether. Our primary design concern is to minimize system
downtime for upgrades and crashes which leads to minimizing obsolescence
of the system as a whole even though individual components may be wholly
replaced.

While the previous paragraph describes the nature of the system, here is
a simple description of what the system needs to do:

Reliable communication between entities is needed. Entities are every-
thing from computational tasks to devices, which includes communication to
and from users, access to and from all forms of storage devices, and com-
munication to and from different computer systems. And naturally, in the
context of operating systems, “users” refers to both client program code and
people, which at the level concerned, there is no distinction.

Although the design was originally specialized, rather than have an in-
formation engine which processes two or three dimensions of data, or even
process n-dimensions, we need to move arbitrary information around, as with
operating systems in general. The term mowve is used to imply that the data
being stored, accessed, and communicated, are not restricted to any preset
type or data structure. The system transports information to and from these
entities, leaving interpretation to the entities requesting the communication,
yet a single internal data structure is used for encapsulating all data.

Immediately, the question of data consistency comes to mind because not
all computers store bits in the same order and not all networks carry bits
in the same order and the possibility of using heterogeneous systems always
exists today.

To satisfy the reality of bit consistency, the entities must register with
their remote counterpart and negotiate upon which formats to use, if other
than the default formats. By negotiation, we mean specify which protocol
to use. This negotiation frees the communicating entities to use whichever
protocol is optimal for their conversation, and as better protocols are imple-
mented, they may be used.

To expand the range which our entities may be: everything is an entity,
and all entities may be communicated. This means the protocol evaluators
are entities, and if the remote and local entities can negotiate upon a protocol



for exchange, the protocol evaluator code may be transmitted to another
entity (in this case, system). This makes use of dynamic linking, and since
the system is intended to make remote-versus-local distinctions transparent,
we also have remote dynamic linking.[1]

Since there is some discrepancy between researchers about the exact
meaning of “dynamic linking,” we are referring not to load-time linking or
run-time overlaying but the loading and linking of modules which may have
been created after the system has begun running, without the need to restart
the system.

From this brief overview of requirements, it should be clear that there is
no new theory required for the design of this system, so applying existing
theories and systems’ technologies should be sufficient.

3 Previous Systems

A brief description of pre-existing systems and platforms is presented from
the perspective of our design as if our design was modeled after that particular
design.

Complete descriptions of each system described and elaborations of ben-
efits of particular features are not presented in this document; instead the
bibliography lists works related to our design and the designs presented here.
Prior knowledge of these designs is not required to understand our design.

Some features are not mentioned here which may have been elaborated
upon in the original documents, and since some features were novel then but
now assumed, such descriptions are left for the reader to find in the original
documents. Examples of this are: memory management services making use
of the hardware-provided memory paging and protection features and having
sufficient local memory to provide caching for just about everything.

Following all of the design description, the MOSES features which differ
or extend the designs are given.

4 Prospero: The Virtual System Model

The project developed by B. Clifford Neuman at the University of Washing-
ton called Prospero, an implementation of the wvirtual system model, creates



a user-centric view of a global file system. The model provides more func-
tionality by being included as part of another operating system rather than
by being a stand-alone system itself.

For an abundance of technical reports on Prospero, the virtual system
model, and associated proposals and research, see Neuman’s papers [3] [4]
[5] [?] [7] [8].

The file system service provided spans to include any file on any file
server on the network, theoretically anywhere in the world. The name space
is user-centric in that the user controls what is named in that space.

The usefulness of the virtual system model is in what it hides from the
user. The claim is that with a global file system, there is far too much
information accessible which can easily overwhelm the user. By limiting
the volume of information that is immediately shown to the user, with the
remaining hoards still accessible upon request, the user sees small digestible
portions of the total environment, which in this case is presented as a file
system.

The user-centric name space for finding files in this global file system is
completely under the control of the user. The user not only can control which
directories from which hosts to include in his/her/its domain, but individual
files to be included are also at the discretion of the user.!

A step to further increase user-control is the use of filters. A filter is a
task associated with a link to a file. The virtual system model explicitly
specifies that this task take the form of an executable program, but clearly
the design includes the possibility of kernel’s internal functions to be dropped
in as easily as programs for small file systems residing in main memory.

User-centric name spaces, union links, and filters keep the user’s view of
the world limited only to that which is of interest to this particular user.

It is crucial to the design that the filters be associated to links and not to
directories. That is, filters provide the interface on a one-to-one relationship
with the files and not one filter to many files as would be the case with
interfacing only to directories.

Different users should be able to, of course, access other users’ names
spaces, so any implementation should handle access rights. Filters may han-
dle such access rights which then would put such matters entirely in the

1Selecting files from multiple directories to be accessed as if they all resided within the
same directory is referred to as union links.



hands of the users.

The virtual system model is not just for human users to find their way
around a global file system. The model provides the scoping and a con-
trollable environment for applications and services as well. And again, one
element of the control is security.

Scoping allows applications to run consistently for different users because
everything the application needs is known through an environment (the name
space) which is associated with that application. Continuing the idea of
scope, security of access rights may be handled as a function of the environ-
ment. This functionality may be implemented as a filter function, and these
environments are what give users their view of the global system.

The concept of an authority is used in the virtual system model, imple-
mented as a remote name space. An authority is anyone who knows more
about a particular entity than you do, including knowledge of another entity’s
existence. When information or resources are being sought, an authority may
be asked to share its information. This is how additional links to remote sys-
tems may be found.

The presentation of the model thus far is quite vague on one point: the
exact form of information to be stored and accessed.

The storage from within the model is presented as a file system in the
Prospero documentation but by abstracting the functionality of a file system
and imagining uses of filters, any form of memory should be accessible as
different name-spaces: a task’s local memory, a system’s main memory, local
disks, remote file servers, etc.

Access through filters and environments includes access to other system
resources, such as processors; thus, there is more functionality to the system
than just the global file system aspects. The important point here is that as
an operating system, the resources are accessed using the same abstraction
as with the file system. However, this is not limiting access to other devices,
just providing a common interface.

Whether accessing a remote file or another remote resource, the remote
system still has control of that resource, which provides a base level of data
security /integrity. And by using filter functions to reach remote systems’
resources, local systems have drop-in security against local users accessing
remote entities.

Some issues raised by Neuman are closure, authentication, and sharing
data with naming conflicts.



Closure is the need for association of remote links to local data to have
some identification of the remote entity linking to that data.

Authentication is necesary whenever remote requests are made. Knowing
and verifying who is making requests before granting those requests in a
reasonable amount of time is very important. The importance increases as
the systems are used outside of a research environment.

Sharing data with naming conflicts between users always exists. Since
multiple users may have the same name for different entities, a sense of local
versus remote naming must be introduced such that anything outside of the
user’s namespace is named according to which other user’s namespace the
entity resides. Any concept of an authority may be viewed as simply yet
another user with its own name-space.

5 Amobea: A Capability-Based System

The elements of capability-based operating systems which are examined are
the protocols, communication mechanism, file system, process management,
and resource management, avoiding detailed issues of security and authenti-
cation.

The other features of the implementation model are not important for our
discussion. See [2] and [9] for a full description of the model and Amoeba.

S.J. Mullender and A.S. Tanenbaum describe a system design using capa-
bilities called Amoeba. This system was described as being radically different
from existing systems, in their 1986 paper. The difference was due to a re-
jection of rigid multilayer protocol stacks which introduce extra levels of
indirection thus makes the system inefficient.

Using the design philosophy of keeping the system kernel as small as pos-
sible and using abstract data types for controlling/accessing system resources
allows a more efficient implementation which has many benefits. The two
primary benefits are as expected: a higher level of user abstraction for deal-
ing with the systems and its resources, and without rigid protocol stacks
having to be implemented within the kernel, such stacks may be introduced
later, thus moving one cause of obsolescence from the kernel to outer system
layers.

Also, in the same manner which the protocol stacks are optional to the
system and may be external to the kernel, so too, features like security and



authentication are optional to the system and may be external to the kernel.

As is the trend with modern systems, connection oriented communica-
tions are being avoided as the default message passing mechanism. Instead,
messages are passed as transactions (to use Mullender’s term) which take the
form of a small hierarchy of packets based upon datagrams. Note that this
hierarchy is not a strict protocol stack but users will typically access just the
top level. The levels deal with degrees of reliable transmission and network
access, as expected.

By having tight control over the protocol levels, optimization of pack-
ettizing messages is possible. Mullender reports of two-thirds of file-system
accesses can fit into single packets of 2K bytes. Thus packets can allow for a
“request-reply” or “transaction” protocol implementation.

Services of the system are accessed through ports where communication
actually takes place. These ports are known only to the server and each
client, and potential clients for common services will generally know of such
a service and its ports. Knowledge of a port does not mean service will be
granted automatically.

Security and Authentication of service users may be handled by hardware
or software external to the kernel. Being external, such features do not
expand the size of the kernel and may be replaced without modifying the
kernel, thus lessens the reasons to upgrade the kernel, thus lessens the number
of system shutdowns.

Getting into more traditional operating system functionality, capability
management is distributed, as expected for a modern system, not centralized.
Capabilities may be viewed as the protocol of the core operations of the
system which replace system call access to kernel features. That is, access
and manipulation of system resources such as the file system are controlled
through this protocol, or capabilities.

The syntax of a capability is such that some authentication is made.
Other syntactic features are for the server port number, entity within the
server such as an internal function call, and access rights.

Common services are those of file systems and process management.
First, the file system is presented. The file system consists of three primary
services itself. The File service deals with linear files which permits those
files to have internal addressing (relative to itself) and does not fragment the
files. The Block service deals with raw device access and has no concept of
files or file systems. The Directory service deals with symbolic names of files

7



to locate internal file reference values.

Processes, which may be seen as accessing the system resource pool of
software applications, are managed in this design by three subsystems: the
Generic server, the Process server, and the Boot server.

The Generic server will handle common applications, and the example
given by Mullender is that of a pascal compiler targeting a MC68000 ar-
chitecture. In this case, a cross-compiler may be used on, say, a VAX to
generate the target code. The user will not care what system actually runs
the compiler, provided the target code is correct. So, the Generic server
handles such cases of using common software applications.

The Process server is used when there is no support from the Generic
server, such as when that user wants to execute the compiled Pascal program.
Since there will be no knowledge of this program to the Generic server, the
Process server will initiate a new process/thread to handle the execution of
this program.

The Process server must be informed of, among other things, the capa-
bilities of the process/thread to be executed. For most current operating
systems, this refers to file descriptors and environment variables.

The Boot service keeps other services alive. By periodically checking the
status of services, including its own subservices which check the Boot server
itself, should any of these services crash, the Boot server will restart that
service. The nature of the services dealt with are things such as the file,
directory, and block services which support the file system.

6 The V Kernel

David R. Cheriton’s V distributed system at Stanford University was devel-
oped with the design philosophy that the communications protocols, not the
software, define the system, and the other tenet is that this protocol must
provide high performance because the most elegantly designed protocol is
worthless if the system is not usable. It is the philosophy of the design which
is focused upon here.

For a description of the V system with details about the implementation,
refer to Cheriton’s 1988 CACM paper [1].

The kernel is described as a software backplane, functioning like the back-
plane of a computer bus. The functionality is a network-transparent abstrac-



tion of address spaces, lightweight processes, and interprocess communica-
tion.

Interprocess communication is performed via a fast transport level service
for small messages such as remote procedure calls. The kernel handles remote
and local cases of message transport differently to optimize local routing. For
remote routing of messages, the VMTP transport protocol is used which is
a request-response protocol.

The protocol supports multicast communication through an additional
layer of indirection, which may be seen as an alias: a single pseudo-entity
being addressed to which does the multi-destination message sending. The V
kernel does this aliasing by logically addressing a process group rather than
an individual process, but the abstraction still holds.

The intercommunication mechanism provided by the kernel allows ker-
nel services to effectively be applications of the kernel although may reside
within the protection of kernel memory domains. Therefore, interprocess
communication between a user process and a kernel service is identical to
communication between user processes, as is identical to most communica-
tion between the kernel and its services. Using a message-passing facility
for communication rather than system calls permits the mechanism to be
modified independently of the service modules and without the need for the
system libraries being modified.

The system is packaged with kernel plus all of the basic services to provide
the minimal functionality of the system, such that each server only has to
deal with the case of local requests, thus simplifying the implementation
of each server. The benefit is that all basic requests of a kernel service
will be granted by intercommunication with a local service, reducing the
implementation complexity of those services.

This design of kernel service communication also allows additional system
services to be dropped in cleanly without recompiling the kernel.

Some system services include a real time service synchronized via the
interprocess communication facility, thus avoiding the need for a dedicated
or complex time protocol yet sufficient enough for real-time applications.

Process management services for creation and destruction of a process is
separate from that of memory allocation services, specifically for creating the
address space of the process.

File descriptor management services are handled separately such that
overhead for destruction of a process is minimized, thus a separate garbage

9



collection service must monitor which processes are no longer existing and
clean up the file descriptor tables and such accordingly.

Scheduling services within the kernel are minimized in complexity using a
simple priority-based scheduler, and more complex scheduling is handled as
an external service, any theoritically may be replaced at run-time as system
loads change.

Memory management services load a program file on demand such that
there is no special mechanism for program loading versus mapping a file
into an address space, and file-like access to address spaces are permitted
so standard user input/output routines may operate on any file or address
space, providing a common interface.

Device management services handle access to all devices while being
device-independent and hardware-independent yet still frees the kernel from
the associated tasks with the exception of the lowest-level interrupt routines
which must be privileged for kernel integrity.

User input/output facilities are library routines which provide a higher
level of abstraction than individual messages, thus consistent with other oper-
ating systems’ interfaces. The differences with other systems start with that
I/O is block-oriented, not byte-oriented, thus provides an efficient transfer
of data to entities which can accept multibyte increments of data. Secondly,
I/O is stateful which is useful for locking and recovery with remote links to
data. Finally, there are three types of interface functionality: compulsory, op-
tional, and exceptional which respectively define the base-level functionality,
additional functionality, and escaped functionality for specialized operations.

When it is necessary to find a file or a resource using a name, the V
design has each manager implement the naming for its own set of objects;
thus, there is no need for a master naming service for everything within an
object. However, a master naming service may be used to find other services,
and each process may have a local cache of the services’ names it uses.

Names to objects within remote services are identified via string names
with prefixes which correspond to each particular service. This naming
scheme creates a shared memory. Names are different from object identifiers
since the overhead associated with string-names should be minimized. Ob-
ject identifiers are fixed size bit strings with fields specifying manager/server
and local object within that server.

Object identifiers are used only as non-static pointers, thus must be re-
assigned after a crash and restart, unlike names which may still be valid after

10



such cases. In a deeper level of identification, entity identifiers are also fixed
size bit strings but without internal fields defined.

Entity identifiers are host-address independent, thus migrateable, but
this causes a conflict between reasonably sized identifiers and the problems
associated with reuse and expected identified entities being seemingly altered.

7 MOSES, As An Eclectic Design

The MOSES design starts with the concept of an entity which is a gener-
alization of memory (files, processes’ memory spaces, and memory-mapped
resources), functions (processors, processes/threads, tasks, and system call
libraries), and communication (protocols and remote resources, services, pro-
cessors, libraries, authorities, etc).

Keeping with the V design philosophy, the key of the system design is the
protocol, and performance matters for elegant designs in the context of large-
scale operating systems. As agreed upon by the designs considered, a request-
reply protocol is used for message-passing. Since most messages/requests
will be small in size, packet headers are optimized for such cases while local
delivery cases are treated special. Second of the design criteria is network
transparency, as is typical of most modern systems.

To satisfy the needs of the entity generalization and to support the desired
protocol features, an abstract data type is used internally to our system, as
with the systems reviewed. The data type which is used reflects the internal
structure of a file system to provide data integrity while allowing concurrent
accesses; however, this form of security is performed block-by-block and not
for whole files. This block-by-block form of security corresponds directly to
Amoeba.

An additional feature which does not seem to be in any of the designs
studied but could possibly be added simply, is that the single data structure
used by MOSES allows nesting and recursive links and doubling up of data
blocks which eliminates the need to duplicate data just for the sake of having
a copy. Due to this feature of effectively nesting tuples, the term we use to
describe our structure is grouple.

Keep the kernel as small as possible: more sound advice from our prede-
cessors. Small kernels simplify real-time versions of the system, if necessary,
and in the applications intended for our system, real-time is definitely on

11



the list of future projects. Also, by keeping the kernel small, there is less to
break, thus less to fix, thus less to worry about, thus hopefully translates to
minimizing downtime and upgrading.

To provide for network transparency and giving users the freedom to
access both local and remote entities with a common address format can be
done a number of ways, as demonstrated by the systems described in this
document.

Our system provides an address structure as part of our grouple structure
which handles both internal/local addressing and external/remote address-
ing. The remote addresses are defined in terms of the user’s local name-space
(DataSpace) and have corresponding closure-entries pointing back to the user
from the remote entity. The remote address is maintained in place of would-
be local data and linked to by a Remote-DataSpace service which keeps track
of all remote references. Likewise, on the remote end, there is a corresponding
service keeping track of links to local data by remote addresses.

The Remote-DataSpace service provides the closure which the virtual
system model brings our attention to, thus cases of amnesia are recoverable
and avoids dangling references, all without the overhead of adding closure
information to each data block structure.

To handle the issue of data integrity, especially with remote links, version
identifiers will be maintained within addresses and the headers of the actual
data. This corresponds to each of the systems reviewed.

Independent of network topology, MOSES routes messages entity-to-entity
rather than just port-at-host to port-at-host. This form of message routing
is similar to that in the V kernel, which is also network independent. Both
Amoeba and V optimize routing for local and for remote cases rather than
use a single generalized case, and we agree with this decision.

Routing entity-to-entity is inherently a non-multicast system, but multi-
casting can be performed indirectly through an alias which is a single entity
containing the addresses of all target entities for the multicast. Again, this
corresponds to many current systems and notably, V.

Routing tables are maintained by a one-time start-up registration. Changes
to registration information are done through either sending another start-up
registration and thereby invalidating any corresponding existing information
or by sending a re-registration message with just the changes. The start-up
registration is typically sent after a new installation or a total system crash
and cold boot. The emphasis put on crashed systems agrees with the V

12



system’s expectations of reality.

The protocol used by MOSES is nothing more than a transport mecha-
nism, just like with the other modern systems. But, from the ground up, the
protocol provides access to the physical network, support for request-reply
messages, multi-packet single messages, and multiple sequenced messages.
All layers are user accessible, all of a configurable reliability, configured by
entity-to-entity registration and/or by what is effectively system-to-system
or system-to-gateway registration.

The V system only allows user access to the top level of their protocol
stack with degrees of reliability increasing towards the user level. Prospero
has a similar transport mechanism to MOSES, though as currently imple-
mented, not as configurable. In each system, rigid protocol stacks are avoided
in the core of the design, but may be added later, externally to the kernel.

By having a one-time start-up registration, the registration information
is effectively cached by both sides of a registration, and again, this agrees
with the Prospero, Amoeba, and V.

Message-passing between remote systems is performed via randomly se-
lected ports. This provides minimal security by way of hiding information,
but just as additional protocol stacks may be added (explained below), so
too security such as encryption may be added later, externally to the kernel.

Security and selecting an alternate protocol stack is handled via late bind-
ing of protocol. This is done as a function of the grouple data structure within
MOSES, and similar features exist in each of the systems reviewed. As with
filters in Prospero or by replacing the packaged services which are external
to the Amoeba and V kernels, alternative protocols offering security may be
dropped into MOSES either as an external process or linked internally within
the kernel.

This brings up an important feature of MOSES which could only be added
to the other systems after a major rewrite effort.

Additional functionality may be installed as an external process or as an
internal function routine within the kernel. Without discussing the internals
too deeply, the mechanism is addressing the scheduler versus addressing a
function pointer, but the mechanism is designed to provide maximum flexi-
bility of the kernel. None of the systems reviewed have this feature.

Through this user of changing internal functions and through the use of
dynamic linking—referring not to load-time linking or run-time overlaying
but to linking and loading of modules possibly created after the system has

13



been started up—internal functionality of the MOSES kernel may be wholly
replaced on-the-fly.

Upgrading on-the-fly is then possible from a (trusted) remote service,
without the need to restart the system, thus saving all volatile memory,
while only producing a one-time delay when viewed by other systems and
services.

Some service packages which may reside internally or externally are the
scheduler, the spawn service, the router, the message-delivery facility, the
memory allocation server, file system services, and the boot server.

Each service is fairly common, thus expected, but the boot server is the
same as with Amoeba’s boot server and is solely for the purpose of keeping
other services alive with subservers to keep itself alive. Also, the memory
allocation server has subservices for internal/local processes’ memory and
subservices for external /remote device memory such as on disks.

For a native MOSES file system, directories are inherently treated sepa-
rately from the files which are also inherently different from the individual
grouples (blocks) which compose the files, and this corresponds directly with
the file system family of services within Amoeba.

Again as with Amoeba, the process services provide a “generic” service
which maps process creation requests for commonly used processes into regis-
tered services. Such a re-mapping service could easily be implemented within
MOSES, but at least initially, the task of first checking registered services
resides with the user to check the registration tables.

Getting back to the dataspace concept, rather than rely upon just existing
dataspaces as with Prospero, and rather than creating a de facto shared
memory space, a global memory system is created, called the DataSpace. This
dataspace gives an entity- or user-centric view of the system when applied
to a local system, and that one node (call it a subspace) is part of the global
DataSpace when viewed as a distributed system.

Remote dataspaces are addressed just as any other remote entity. Initial
entity access may be via looking up symbolic names in another space or by
requesting a name from an authority, but both are implemented ultimately
as another DataSpace.

Depending upon how a different dataspace is accessed as a subspace,
scoping and authoritative spaces may be set up. This matches the scoping
efforts of Prospero.

Symbolic names are represented by scalable multibyte characters; that is,

14



for each string of symbols defining a name, each character must be the same
number of bytes, but that number may vary from string to string. Without
the scalability at run-time, opposed to at compile-time, this is similar to
“entity identifiers” within V.

Such symbols are the foundation of the addressing scheme mentioned
earlier. By allowing scalable multibyte symbols, transportation and delivery
of multibyte character string messages can be optimized for local delivery
and remote delivery.

Also, scalable symbols allow optimizing internal messages to the local
processor and to remote processors. This of course applies to all local and
remote resources as well. And, such symbol strings work well for Asian
languages which use multibyte characters.

The MOSES system is packaged with kernel plus all of the basic services
to provide the minimal functionality of the system, even if all a service does is
nothing more than itself make requests of a remote service. The benefit is that
all basic requests of a kernel service will be granted by intercommunication
with a local service, which then may make a remote request.

To respond to the issue of implementation complexity and the significant
performance loss incurred should such a feature be used, which is the reason
the V kernel does not do this, this provides for a means of running with
the latest system kernel service features temporarially without having the
upgrade.

However, for efficiency’s sake, the criteria with the V kernel for having the
full kernel services wholly implemented with each system package is highly
desirable and will remain our default case, but we wish to not exclude any
possibilities of functionality.

8 Conclusion

It should be quite clear that there are no new theories within the MOSES
design; however, there are also no existing system implementations which
have all the features which we desire. But should there exist such a system, we
will still finish our implementation just so we can have the fun and excitement
of writing our very own yet another distributed operating system.

15



9

Addendum

10 February 1992

One system in particular which seems to have all of the MOSES features

is the ISIS distributed system from Cornell University.

This system has just been brought to my attention, and a future version

of this document will describe ISIS.

References

1]

2]

David R. Cheriton. The V distributed system. Communication of the
ACM, 31(3), pp. 314-333, March 1988.

S.J. Mullender and Andrew S. Tanenbaum. “The design of a capability-
based distributed operating system,” The Computer Journal, vol. 29, no.
4, pp- 289-299, 1986.

B. Clifford Neuman. “The need for closure in large distributed systems,”
Operating Systems Review, vol. 23, no. 4, pp. 29-30, October 1989.

B. Clifford Neuman. The virtual system model for large distributed op-
erating systems. Technical Report 89-01-07, Dept of Computer Science
and Engineering, U of Washington, Seattle, WA 98195, April 1989.

B. Clifford Neuman. Workstations and the virtual system model. In Pro-
ceedings of the 2nd IEEE Workshop on Workstation Operating Systems,
pages 91-95, September 1989. Also appears in the Newsletter of the IEEE
Technical Committee on Operating Systems, vol. 3, no. 3, Fall 1989.

B. Clifford Neuman. The virtual system model: A scalable approach to
organizing large systems, a thesis proposal. Technical Report 90-05-01,
Dept of Computer Science and Engineering, U of Washington, Seattle,
WA 98195, May 1990.

B. Clifford Neuman. Proxy-based authorization and accrounting for dis-
tributed systems. Technical Report 91-02-01, Department of Computer

16



Science and Engineering, University of Washington, Seattle, WA 98195,
March 1991.

B. Clifford Neuman. “Advances in Distributed Computing: Concepts and
Design,” chapter within Scale in Distributed Systems. IEEE Computer
Society Press, 1992.

Tanenbaum, A.S.; Renese, R. van; Stavern, H. van; Sharp, G.J.; Mul-
lender, S.J.; Jansen, J.; Rossum, G. van. “Experiences with the Amoeba
Distributed Operating System,” Communications of the ACM, vol. 33,
no. 12, December 1990, pp. 46-63.

17



