MOSES Kernel
Implementation Design

The MOSES Project:
Meta Operating System And Entity Shell

Daniel J. Pezely
11 May 1991

1 Introduction

We needed a very flexible operating environment suitable for research, de-
sign, and development of applications—applications for wide-area multiple
users desiring more than just control but requiring participation with the
data and functions within the application. This environment requires a solid
foundation to run upon, and this paper describes that foundation.

Readers from outside distributed systems development should be able to
follow the abstractions and design arguments, but our primary goal here is
communicating to operating and distributed systems people. Other papers
give informal specifications of the design and others give formal specifications
of individual elements, such as the communications protocol suite.

We start with a brief list of other research areas which are applicable to
this project and a short mentioning of some design features from those areas.
Then, we present a quick overview to give distributed systems researchers a
frame of reference before explaining the software architecture. A summary is

given in this paper, but analysis and applications are described in companion
1
papers.

2 Background

From an operating systems perspective, we looked to UNIX ? 4.3BSD, Linda,
Mach, Plan-9, and Amoeba. See (3], [4], [5], [6], and [7], respectfully, for their
designs and results.

The UNIX operating system allows pipelining processes together so that
one program’s output is another’s input. Pipelining in this case is more than
just another name for interprocess communication (IPC), but the ability
to interpret an IPC stream as the standard input or standard output data
stream has benefits in itself.

These benefits provide very powerful techniques which our design should
possess. By using such tools, a uniform access to environment resources may
be achieved through simple tool hierarchies.

In short, we derived our communications design from the knowledge and
experience gained from the Internet Protocol (IP) suite * [10] and the Open
Systems Interconnection (OSI) protocol stack # [11]. We have reviewed the
design descriptions, analysis, and commentary of designers, implementors,
and experts in the networking field. °

The IP flexibility to bypass one layer and access an underlying layer is
very desirable yet something which cannot be done with OSI.

The components used from each system are discussed further below.

3 Software Architecture

In short, MOSES is a distributed, message-passing, open operating system
providing system independence and not just hardware independence.

1See [1] for analysis and [2] for developing applications.

2UNIX is a Registered Trademark of AT&T Bell Labs.

3The DoD ARPANET model.

4The International Standards Organization’s Open Systems Interconnection model.
SReferences include Dave Mills <mills@udel.edu> and [9] [10] [11] [§]

3.1 Design Overview

MOSES stands for Meta Operating System and Entity Shell. A meta operat-
ing system (meta-OS) is a layer above the native operating system (OS)
but below applications. Such a layer fits into, but is not restricted to,
the OSI Presentation layer. (See Figure 1.) Our design also covers the
OSI Session and Application layers, but like the Internet model, the Pro-
cess/Application Layer may be bypassed completely or built upon using any
number of application-supplied interface layers. (See [11] for an overview of
these and other protocol layers.)

Our design gives users access to underlying (native) OS resources. Addi-
tional features provide for multiple users, distributed shared memories, and
parallel execution, across internetworks.

3.2 Special Characteristics

The Entity: any and all arbitrary information which can be described sym-
bolically. An entity’s inherent components consist of memory, function, and
communication, but the boundaries between these elements blur since mem-
ory and communication may be seen as functions, and communication may
be attained through memory/storage. [12]

Entities are more abstract than programming language objects; since ev-
erything is an entity, everything looks identical to the system. This apparent
identity allows any feature or user to be anywhere in the system. Location
possibilities are limited only by the extent of the networking and distributed
systems.

The DataSpace: unity of all memory which appears to be under the ex-
clusive ownership and complete control of each user while being a distributed,
shared, associative memory with internal and external addressing permitted.
[13] (See Figure 2 for the user’s illusion and Figure 3 for the actual DataSpace
organization.)

To provide simple distributed systems solutions, primitives and segmen-
tation make DataSpace usage transparent to users. Other shared memories
may be implement on top of the DataSpace since the DataSpace only defines
the control primitives and handles apparent boundary-less segmentation.

3.3 The Kernel is the User Shell

One key architectural design element makes the core program in this design
equivalent to applications, but more, the core program entity may be called
a kernel and a shell.

We often refer our system as a kernel intentionally for the comparison to
an OS. Although our design does not specify any low-level operations which
might be expected in a kernel, all the features could be implemented. Rather
then re-implement an entire operating system for each hardware platform, we
build upon existing completed systems and keep our kernel as an application
of other OS’s.

3.3.1 Kernel Services and Features

Like other message-passing OS’s, design extensions and additional features
may be handled by implementing kernel services (daemons). So, unlike the
original UNIX kernel which has grown to include many features, this kernel
should remain very small and all additional features will be implemented
externally. In fact, the DataSpace primitives require only a daemon; all
users of the DataSpace shall access stem routines which communicate with
the external daemon.

3.3.2 Communication Protocol Suite

And we often refer to our system as a shell since the protocol suite shall
be accessible to the user directly. That is, the user may talk to the system
through any protocol in the suite via tools or having typed keystrokes be-
coming a data stream for a protocol interpreter. Such accessibility of all the
protocols makes all users of the system—humans, applications, and daemons
alike—identical. To provide for human interaction, very high level protocols
may be used, and the Common Lisp programming language is one early shell
protocol used.

Communication between non-human users, of course, make use of more
efficient, protocols than text-based programming languages.

3.4 Data Structure Overview

There is only one pair data structures in our design and they serve one
purpose: storing lists of information. We omit the actual data structure
definitions in this paper since we are emphasizing implementation strategies
and not implementation specifications.

Inside the kernel, we only distinguish between basic data types to prevent
data corruption. The data types used internally are symbols, pointers to
nestable lists, and pointers to functions.

3.4.1 Physical Storage Locations

Data can be stored in any location which the native OS can access (disk,
RAM, special devices, etc), but the data structure must provide for a uniform
access. That is, by accessing information in the database, if that entity’s data
is actually on some remote or external device, we must be able to access it
easily and cleanly. We allow access through functions which are stored in
the database. The functions are not the data, but the value the functions
produce through computation or through remote-procedure-calls (RPC’s)
produces the actual value.

3.4.2 Use of File System Design

We are providing a shared memory, and our design draws from existing de-
signs. The BSD fast file system, a simple shared memory, handles small
blocks of information well and the design is sufficient for our needs at this
time. [3] Amoeba’s Bullet servers are designed to be faster for storing com-
plete files. [7] However, the fast file system better suits our requirements
which are similar only to storing inodes and blocks and not to storing lengthy
files.

Networked file-systems used heavily today have demonstrated the effec-
tiveness of shared file system designs. However, the key to managing network
file systems is having a bottleneck: the file server. This limitation simplifies
resource sharing and mutual exclusion of data, thus systems become dedi-
cated to the sole task of file system service. We accept this design for our
system and are evaluating this approach from the standpoint of tomorrow’s
systems. Naturally, research will continue after we analyze performance of
this design.

3.4.3 Use of Lisp S-Expression Design

Since our kernel makes no distinction between different types of information,
we looked to various list processing techniques. The lists to be managed are
arbitrary. That is, there is not structure or length imposed upon the lists.
Much of the list data structure borrows from Lisp s-expressions [14] but is
not limited to that.

3.5 Grouples and Symbols

The name we assigned our version of information lists is grouple. Unlike
s-expressions in Lisp, the user stores all information for distinguishing be-
tween various atomic data types in a grouple and references the data as a
nested grouple. A grouple stores bits and treats bits of atomic elements as
generic symbols. Non-atomic elements like data types and property lists are
maintained as regular lists of lists or lists of symbols and accessible to the
user directly or through functions.

Characters, integers, and floating-point numbers are interpreted as such
at the points of use. Symbols are passed to routines or external users, and
they determine what the symbol data type is. This removes any restric-
tions on the precision of numbers and allows heterogeneous systems to work
together.

3.5.1 Grouples as Lists

One grouple contains one list of information elements. Since grouples can
be nested, some information elements may reference other grouples to form
the nesting. Each grouple is typically small and may be chained to form
hierarchies. This chaining is similar to data blocks referenced from inodes in
UNIX file-systems, hence another reason for using a file-system-like storage
strategy.

3.5.2 Grouples Store Entities

An entity is one grouple, but this “grouple” includes all its nested grouples
and includes all of their nested grouples and so on, until symbols are reached.
We view symbols as leaf-nodes in a tree but do not restrict ourselves to
only trees. Although the design permits nesting of complete grouples, the

recursive concept of any one entity being one complete grouple and each of its
children being complete grouples themselves, is very important. The benefits
due to this recursion simplifies implementations.

The chain of all grouples allocated within a single system form a unity
called the DataSpace.

4 Entity Memory—The DataSpace

To provide the functional unity of memory and the uniform access of in-
formation which has been mentioned earlier, we use the DataSpace. The
DataSpace functions as an associative memory similarly to the tuple space
in the LINDA model. [4] What LINDA omits from the specifications, namely
the structure of the tuple space, the DataSpace provides. Our structure
chains of all allocated grouples (nestable lists of arbitrary information) to-
gether which in turn may be treated as a whole. That is, we may treat the
collection of all stored entities as a whole.

This structure assists for debugging the DataSpace, best understood with
a disk-file analogy. With a disk file, we may view data blocks as a single
object: the file. With the DataSpace, we may view all grouples as a single
object: the DataSpace. Likewise, the entire DataSpace may be examined
from start to end, just as a plain disk file may be examined. Design of a
debugging-entity follows easily from this feature.

4.1 Segmenting the DataSpace

By segmenting the DataSpace, it can be distributed. Additionally, we reduce
searching complexity for the DataSpace using indices, as is common in rela-
tional databases; however, subspaces used as indices are part of the DataS-
pace rather than being distinct data files themselves. Some of the standard
segments, or subspaces, within the DataSpace are: the SysLibSpace and the
UsrLibSpace. The parser imposes these subspace classifications, and as de-
scribed in the parse section, the user completely controls all aspects of the
parser.

Keeping things simple and consistent and even recursive, each subspace
is a space in the sense that the DataSpace is a space. Inside the kernel,
the same pointer type which references the DataSpace is the type of pointer

which references each subspace. This gives us uniform storage facility access
and uniform access both internally to the kernel and externally for the user.

A subspace, then, is a list of grouples contained in that space. The kernel’s
internal subspace pointer used references that grouple, and the DataSpace’s
internal pointer references the first grouple in the DataSpace. Again, we chain
all grouples together in the DataSpace; therefore, from the first grouple, we
can access the entire DataSpace.

4.2 Subspaces, Described

The subspaces, which may be called spaces, are entities and are represented
using grouples. Therefore, a space may be local or remote, structured or
unstructured, a tree or a table, etc. Since we may use a grouple element
as a symbol, a function, or reference to another grouple, we may develop
various types of spaces. The DataSpace management routines and the parser
routines will act accordingly for the different types of spaces. (The routines
and modules mentioned in this section are detailed in their respective sections
of this paper.)

4.2.1 WorkSpace

The WorkSpace holds all input and output messages awaiting service. The
main kernel function operates over the WorkSpace, and this space is known
explicitly only by the kernel main loop. This space is used as a temporary
area for incoming messages and partially resolved (parsed) grouples. Once
resolved, the parser either initiates that grouple’s equivalent routine or stores
the grouple in another space.

By keeping the kernel routines generic enough, they may work with any
subspace or the DataSpace as a whole.

4.2.2 SysLibSpace

The SysLibSpace contains the built-in system routines (the command li-
brary). These routines provide user functionality. Like any other space, the
SysLibSpace may have any structure for further segmentation, thus simpli-
fying parsing.

4.2.3 UsrLibSpace

The UsrLibSpace contains all information, variables, and functions, defined
by the user ® These definitions are created by input messages, thus may
originate from local users, remote users, script files, remote servers, etc.

4.2.4 SpaceSearchOrder

A grouple naming which other grouples to search and in what order is con-
venient, hence the SpaceSearchOrder grouple/space. In general, the Usr-
LibSpace precedes the SysLibSpace, allowing users redefinition of system
routines and variables. This space may be viewed as a path used in many OS
shells or as the scope order and extent in Lisp.

4.2.5 Other Subspaces

We often compare the SysLibSpace and the UsrLibSpace relationship to priv-
ileged versus non-privilege directories in UNIX for access characteristics only.
The parser assigns names to these and other spaces upon start-up configu-
ration.

The communications library maintains routing information and allocated
communications channels with spaces. We highly encouraged all system ser-
vices to follow this example and store all internal information in the DataS-
pace. The information, like any other information in the DataSpace, would
be stored as symbols whose data type is known internally to the service. This
symbol usage allows users access to the data while maintaining internal data
type efficiency.

4.3 Accessing Spaces

As mentioned above, we may structure any space via hierarchies, functions,
or flat symbols. When functions are used, the parser accesses the spaces
through a call to the given function. This function call, specified by the
grouple representing the space, may be a remote procedure call (RPC), thus
we may access remote spaces. Simpler than accessing remote spaces, we may
access non-spaces such as programs and functions.

6 Again, the user may be human or an application.

5 Entity Function

Here, we speak of “function” to mean all executable routines. The system ac-
cesses local routines internally through function pointers, but the user gains
access externally through interface routines known by the parser. By using
interface routines, the actual function could be local, remote, built-in, or a
process to be spawned. Using standard remote procedure call (RPC) termi-
nology, the interface routines are the stem procedures for remote routines.

5.1 Core Routines and Genuine Dynamic Linking

To maximize kernel flexibility, only a minimal set of core routines are built-
in. The remaining routines, including the entire user command library, are
loaded at run-time via dynamic linking. Genuine dynamic linking [15] allows
loading compiled program objects from disk while the program is executing;
however, unlike with just shared-libraries, these object files may be removed.
The native OS considers these dynamic objects to be data and not code. Such
dynamic linking allows upgrading all but a minimal core routines without
restarting the kernel.

The system daemons and applications may be loaded into the system
using dynamic linking for run-time efficiency over interpreter-based linking.
Dynamic linking also gives any entities access to the native OS system calls.

6 Entity Communication

Communication refers to message passing as well as accessing routines. As we
all know, making programming language system calls is one communication
form.

To provide consistency for the user, all communication should be identi-
cal. This is the reason for mentioning communication as a entity’s component
even though it is one specific function class.

10

6.1 Protocols as Tools

Each layer of the communication stack " may talk with any other layer of
the stack directly and without accessing any intermediate layers. Each layer
then becomes a toolbox which may or may not be used. Simple tools build
upon other tools, and complex tools function stand-alone.

Using protocols as toolboxes provides as much flexibility as possible for
communication end-points. By making tools out of the stack, we may bypass
any layer whose functionality we do not require. More functionality may
be added to the tools handling the commonly used procedures which are
implemented repeatedly every day.

6.2 Communicating FEntities

There is a notion of an entity, not of different types of entities; and again,
everything is an entity: including users and routines alike. Accessing entities,
then, translate to the Lisp-style of function calls. That is, accessing a function
via its name or via a function pointer is done the same way in Lisp, thus
simplifying things for the user. The simplicity may be thought of as sending
email and accessing programs being identical. And the simplicity extends to
kernels accessing a common network calling remote entities, thus forming a
distributed system.

7 The Entity Shell: A Base Application

Everything the paper describes to this point may be implemented with kernel
library routines. We provide the user with the full kernel library routines
through the Entity Shell command library. The Entity Shell provides the user
access to all the entities known by the system. To communicate with these
entities, we provide a high-level programming language as the highest-level
user-protocol. The protocols control the shell, the host, the communication
interfaces, and possibly other hosts running a similar shell.

Although having a programmable user shell is commonplace with many
of today’s systems and environments, we mention it here from the kernel
source code stand-point. The Entity Shell is the main loop of the kernel

"Protocol stacks, such as the OSI model.

11

executable. The default main loop selects the next input channel to read
from, reads input from that channel, selects the next unresolved message
in the WorkSpace, attempts to evaluate that message, and repeats these
operations in a loop.

By modifying the kernel source code, programmers may simply replace
the main source file with their own, and all of our modules for communication,
parsing, data storage, etc, will be available as tools in a programmer’s library.

8 Design Summary

The key of the MOSES Design is not necessarily the implementation but how
distributed operating environments are used. Therefore, we may be able to
impose our design upon existing platforms or implement everything from
scratch.

The two fundamental design concepts are the notion of an entity and
the DataSpace organization and structure. An entity may be any arbitrary
information which can be represented symbolically, and the DataSpace is
the storage for all entities. Entities have three basic components: memory,
function, and communication. Again, memory/storage is handled by the
DataSpace, which is also an entity in itself. Functions are entities containing
information about executing a task which may access any native OS system
call. Communication is the most commonly used function, but the bound-
ary between function and communication blurs even more since, by storing
information, other entities may potentially access that information, and that
is communication.

The DataSpace organization and structure gives the user an illusion of
exclusive ownership, but the DataSpace is a shared memory. Also, the DataS-
pace appears to unite all stored entities which may actually be distributed.
A DataSpace storage location may seem to be just that—a location—but in
fact be a function which transports information to a remote system. And
the combined localities of the DataSpace may be viewed as a single DataS-
pace with multiple internal access points. The user transparently accesses
the combined DataSpace, and the user may be human or an application.

Our system is very much user-centric. That is, the design focuses on

12

flexibility and ease of use while providing for and allowing for utmost user
functionality.

Ideally, we created a distributed operating environment for research and

applications to be born, exist, and evolve.

References

1]

Pezely, D.J., Design Analysis and Potentials, Human Interface Technol-
ogy Laboratory, Washington Technology Center, University of Washing-
ton, Seattle, WA, 1991.

Pezely, D.J., Building Multiple, Distributed, Shared, Virtual Environ-
ments with Entity Projection and Transportation Facilities, Human Inter-
face Technology Laboratory, Washington Technology Center, University
of Washington, Seattle, WA, 1991.

Leffler, S.J., McKusick, M.K., Karels, M.J., Quaterman, J.S. The Design
and Implementation of the 4.3 BSD UNIX Operating System, Addison-
Wesley Publishing Company, New York, NY, 1989, pp. 13, 203-208, 281-
310.

Carriero, N., Gelernter, D., “Applications Experience with Linda,” Sym-
posium on Principles and Practice of Parallel Programming, Proceedings
of the ACM/SIGPLAN, Volume 23, Issue 9, September 1988, pp. 173-187.

Forin, A., Barrera, J., Young, M., Rashid, R. “Design, Implementation
and Performance Evaluation of a Distributed Shared Memory Server for
Mach,” Proceedings of the Winter USENIX Conference, January 1989.

Pike, R., Presotto, D., Thompson, K., Trickey, H., “Plan 9 from Bell
Labs,” Expected to be published in 1990 UKUUG Conference, 1990.

Tanenbaum, A.S.; Renese, R. van; Stavern, H. van; Sharp, G.J.; Mul-
lender, S.J.; Jansen, J.; Rossum, G. van. “Experiences with the Amoeba
Distributed Operating System,” Communications of the ACM, vol. 33,
no. 12, December 1990, 46-63.

13

[8] Tanenbaum, A.S., Computer Networks, Prentice Hall, Englewood Cliffs,
NJ, 1981.

[9] Comer, D., Internetworking with TCP/IP Volume I: Principles, Proto-
cols, and Architecture, Prentice Hall, Englewood Cliffs, NJ, 1988.

[10] Comer, D., Internetworking with TCP/IP Volume II: Design, Imple-
mentation, and Internals, Prentice Hall, Englewood Cliffs, NJ, 1991.

[11] Spragins, J.D., Telecommunications: Protocols and Design, Addison-
Wesley Publishing Company, New York, NY, 1991, pp. 118-149.

[12] Pezely, D.J., Overview of Entities in MOSES, Human Interface Tech-
nology Laboratory, Washington Technology Center, University of Wash-
ington, Seattle, WA, 1991.

[13] Pezely, D.J., The DataSpace Entity Specifications, Human Interface
Technology Laboratory, Washington Technology Center, University of
Washington, Seattle, WA, 1991.

[14] Allen, J., Anatomy of LISP, McGraw-Hill Book Company, New York,
NY, 1978.

[15] Ho, W.W., Olsson, R.A. “An Approach to Genuine Dynamic Linking,”
SOFTWARE-Practice and Experience, Volume 21, Number 4, April 1991,
pp. 375-390.

14

