Glossary

Compiled by the VEOS/MOSES Project Teams *
1990, 1991

Standard distributed processing and operating systems terms apply to
this project, as do the tools and techniques used for artificial intelligence.

e connection-less communication
Network messages of this type are sent but not necessarilly verified,
thus may arrive out of order or mangled, if at all. Without additional
transport control, this model is suitable for non-wide area applications
such as small metropolitan and local area netowrks. Also known as a
Datagram transmission. See connection-oriented communication also.

e connection-oriented communication
All network messages of this type are verified for corruption and passed
on to the user in order of transmission. Also known as a virtual circuit.
See connection-less communication also.

e daemon
A service program which the user does not directly control at run-time
is considered to be a daemon. See kernel service also.

e datagram
See connection-less communication.

e DataSpace
The unity of all memory of all entities which exist within the environ-
ment provided by MOSES forms the DataSpace. It’s an associative

*VEOS/MOSES Project people: William Bricken, Daniel Pezely, Dav Lion, David Doll,
Geoff Coco, Mark Evenson, Mike Almquist



shared memory space with address access attempts are permitted (but
may be denied due to stale addresses from clients) and forms a virtual
environment. All memory for the kernel, kernel services, and applica-
tions using the operating system which includes all global, local, and
temporary variables, should be stored within the DataSpace. Each user
has the illusion of ownership, and while may actually possess one sub-
space of the total DataSpace, all subspaces are accessible as a whole.
See [6] and [7].

entity

Any information which exists and represented symbolically is an entity.
An entity may have various forms, descriptive or executable, and repre-
sented by a grouple. Within the kernel, entities possess three elements:
memory, function, and communication. See [8].

flat grouple

In the context of programming and implementation, a flat grouple is
an allocated GroupleHeadClass data structure which has no terms
(GroupleTermClass structures) referenced within it. See also grouple,
null grouple, and term.

grouple

This is an entity represented by lists of information (tuples) which may
be nested via internal addressing. See also messages, GroupleHeadClass,
flat grouple and null grouple. See [6].

GroupleHeadClass

This is the data structure used in implementations and called a grouple.
All allocated grouples are referenced from the DataSpace at run-time.
The structure is similar to file system i-nodes. See grouple.

GroupleSymbolClass

This is a type-definition used in implementations also called symbols.
It provides a generic data type for storing atomic data of any kind.
The interpretation of the data type is done by the user. See grouple.

GroupleTermClass
This is the data structure used in implementations, referenced by GroupleHeadClass
structures, and called terms. Terms can reference only three types of



data: symbols, sublists, and functions. All non-sublists will either be
functions or atomic data. All atomic data are stored as GroupleSymbolClass
types, and functions are referenced indirectly. See grouple.

inode

File-system information node. Usually contains information about a file
pertaining to location of data blocks, creation time, update time, access
time, file size, etc. Filenames are not associated with inodes; names
are kept in directories, thus allowing multiple filenames pointing to the
same file (inode). See grouple for VEOS/MOSES related item.

IPC

Inter-process communication. In the context of MOSES, the intercom-
munication may be across the network to another entity. Such network
traversal should be transparent to the user.

kernel service

A program or entity which provides functionality to the meta operating
system is considered a kernel service. This is a daemon in that although
it may be invoked by a user, the user does not interact with it directly.
The scheduler is an example of a common kernel service. See [9].

Linda

This is one of the early shared memory models with a decent imple-
mentation in both performance and simplicity. There are five opera-
tions usually associated with the system: in (read-in and remove from
the memory), out (write-out something to the memory), eval (evaluate
something from the memory), rd (read-in and copy from the memory),
and two predicates, inp and rdp, which do not wait for data. See [1].

message
The structure of messages for message-passing and distributed pro-
cessing are grouples. The actual syntax will be the Common Lisp|[2]
programming language syntax since grouples are a hierarchical data
structure and do not lend easily to transmission in that form.

MOSES
Meta Operating System and Entity Shell: a project initiated by Daniel



Pezely to develop an implementation of the VEOS design at HITL. See
[5].

e native operating system
This is the operating system which MOSES will run as an application
of in the early versions while the unique features of our system are
being developed. The ideal native operating system (ie, the ones used
during development) are the POSIX compliant systems such as SunOS
and BSD.

e null grouple
In the context of programming and implementation, a null grouple is an
unallocated GroupleHeadClass structure. See also grouple and empty
grouple.

e participation
Usually given in the context of human participation, this means human-
computer interaction. In a true virtual reality system, this is taken to
the ultimate level: interactive graphics, three dimensional sound, and
real-time everything including photo-realistic rendering. On a more
plausible frame for the Nineteen Nineties, the participant is the user,
but has much more control than feeding parameters and digesting out-
put. See [3].

e property list

Since we compare our data structures to Lisp s-expressions, it is im-
portant to state how Lisp property lists fit into the design. Within the
DataSpace, a protoerty list is nothing more than a grouple which lists
the properties of another grouple. The property list will typically be a
sublist of the grouple which it describes. This descript, however, may
be anything which the user wants it to be and is not restricted to Lisp
properties.

e protocol hierarchy
A protocol hierarchy refers to the interaction of individual protocols
within a protocol suite. This hierarchy is not necessarilly a protocol
stack, since layers may be by-passed. The DoD ARPANET Internet
Protocol (IP) suite is an example of a hierarchy. See [4] for a more
complete description.



protocol stack

A protocol stack is most commonly associated with the International
Standards Organization’s (ISO) Open Systems Interconnections (OSI)
protocol stack reference model. This is a rigid stack of layers in which
each layer can only communicate with its immediate neighbors and
cannot by-pass any layers. See [4] for a more complete description.

protocol suite
A protocol suite refers to the collection of individual protocols used
within a protocol stack or protocol hierarchy.

RPC
Remote procedure call. This is a paradigm for a connection-less (ie,
datagram) transmission between network entities.

S-erpression
Internal storage data structure from the Lisp programming language
which allows nesting of lists. See [2].

space
Also called a subspace of the DataSpace: a category for a grouple which
names or addresses other grouples as its only data permitted by con-
vention. This convention is used for classifications purposes only, thus
not enforced. See [10].

subspace
See space.

sublist
A nested grouple. Referenced from within a term.

symbol

In the context of programming or implementation, a symbol is the
GroupleSymbolClass type-definition. It’s generic data type for storing
any class of data, and interpretation of symbol values is up to the
user— floating point real numbers, signed integers, etc— are stored as
unsigned long integers.

term
In the context of programming and implementation, a term is the



GroupleTermClass data structure. This is the element which an al-
located grouple references which, in turn, references symbols, sublists,
and functions.

terminal

This is the end-point of communication where the user is located. Vir-
tual terminals (in the traditional sense) may be controlled by appli-
cations or networked terminals. Actual terminals (hardware: chips,
metal, plastic, and the whole lot) will typically be controlled by a hu-
man participant. The hardware will resemble the graphics workstation
class of computer systems, not necessarily only dumb terminals.

tuple space

In the context of VEOS or MOSES, the DataSpace is used. Tradi-
tionally, a tuple space is used for storing arbitrary length lists of in-
formation. However, the DataSpace permits nesting which breaks the
definition of a tuple. See grouple also.

user
User refers to the client program code or a person accessing the system.
The user is also an entity.

VEOS

Virtual Environment Operating Shell: a project initiated by William
Bricken, Principal Scientist, at the Human Interface Technology Labo-
ratory, Seattle. The goals of the VEOS Project are to develop a system
platform which will make for a suitable virtual environments while not
being tied down to today’s technology. The golden rule of design is
that everything will change.

virtual circuit
See connection-oriented communication.




References

1]

Carriero, N., Gelernter, D., “Applications Experience with Linda,” Sym-
posium on Principles and Practice of Parallel Programming, Proceedings
of the ACM/SIGPLAN, Volume 23, Issue 9, September 1988, pp. 173-187.

Steele, G.L.,Jr. Common Lisp, Second Edition, Digital Press, Cambridge,
MA, 1990, pp. 12-13, 238-246, 247-287.

Bricken, M., “No Interface To Design,” ed: Benedikt, M., Cyberspace:
The First Steps MIT Press, Cambridge, MA, 1991.

Spragins, J.D., Telecommunications: Protocols and Design, Addison-
Wesley Publishing Company, New York, NY, 1991, pp. 118-149.

Pezely, D.J., An Introduction To MOSES, Human Interface Technology
Laboratory, Washington Technology Center, University of Washington,
Seattle, WA, 1991.

Pezely, D.J., The DataSpace Entity Specifications, Human Interface Tech-
nology Laboratory, Washington Technology Center, University of Wash-
ington, Seattle, WA, 1991.

Pezely, D.J., The DataSpace Function Specifications, Human Interface
Technology Laboratory, Washington Technology Center, University of
Washington, Seattle, WA, 1991.

Pezely, D.J., Overview of Entities in MOSES, Human Interface Technol-
ogy Laboratory, Washington Technology Center, University of Washing-
ton, Seattle, WA, 1991.

Pezely, D.J., MOSES Kernel Implementation Design, Human Interface
Technology Laboratory, Washington Technology Center, University of
Washington, Seattle, WA, 1991.

[10] Pezely, D.J., Building Multiple, Distributed, Shared, Virtual Environ-

ments with Entity Projection and Transportation Facilities, Human Inter-
face Technology Laboratory, Washington Technology Center, University
of Washington, Seattle, WA, 1991.



